Soliton point particles of extended evolution equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L1253
(http://iopscience.iop.org/0305-4470/20/18/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 16:15

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Soliton point particles of extended evolution equations

M Błaszak
Institute of Physics, A Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

Received 10 August 1987

Abstract

A Hamiltonian formulation of the particle representation of solitons of extended hierarchies of evolution equations is presented. The extension is related to the addition of new terms with x-dependent coefficients.

In a previous paper [1], we presented a method for finding the point representation of soliton solutions of the hierarchies of non-linear evolution equations generated by an appropriate recursion operator. The method was based on the concept of master symmetries [2] and each solution of the considered hierarchy was of the form $u_{t}=$ $K_{n}(a, u)$, with $K_{n}=K_{n}\left(a, u, u_{x}, \ldots\right)$, where $u=u(x, t)$ and a was a constant.

In this letter we consider the following generalised hierarchies of evolution equations:

$$
\begin{equation*}
u_{t}=K_{n}(a, u)+b \tau(x, u) \tag{1}
\end{equation*}
$$

where $\tau(x, u)$ is the simplest master symmetry of degree 1 that is not a constant and b is an arbitrary constant. We confine our considerations to Korteweg-de Vries (KdV), Sawada-Kotera-Caudray-Dodd-Gibbon (skcDg), modified KdV (mKdV) and Boussinesq (в) hierarchies, but the method may be applied to other soliton hierarchies as well.

The extended Kdv hierarchy (EKdV) has the form

$$
\begin{align*}
& u_{t}=\phi^{n} u_{x}+b\left(x u_{x}+2 u\right)=\theta \delta I^{(n)} / \delta u \tag{2}\\
& I^{(n)}=H^{(n-1)}+b \delta_{1} \quad n=0,1, \ldots
\end{align*}
$$

where ϕ is the recursion operator, $\tau=x u_{x}+2 u$ is the first non-constant master symmetry, $H^{(n-1)}$ is the functional connected with the symmetry $\phi^{n} u_{x}, \delta_{1}$ is a master functional connected with the master symmetry τ and $\theta=D^{3}+\frac{2}{3} a u D+\frac{1}{3} a u_{x}$ is the second implectic operator of the KdV hierarchy, as the simplest one, $\theta=D$, leads to a constant master symmetry.

According to (4.9), (4.14) and (4.16) from [1], for pure soliton solutions with $a=6$, we find the soliton-particle Hamiltonian for the $(n+1)$ th evolution equation (2) in the form

$$
\begin{equation*}
I^{(n+1)}=\sum_{i=1}^{N}\left(\frac{1}{2 n+1} \tilde{p}_{i}^{2 n+1}-b \tilde{p}_{1} \tilde{q}_{i}\right) \quad \tilde{p}_{i}=2 \kappa_{i} \tag{3}
\end{equation*}
$$

Note that our particle variables are connected with the second Hamiltonian structure of the hierarchy, contrary to those from [1] which are connected with the first Hamiltonian structure. The equations of motion for the particle variables ($\tilde{p}_{1}, \tilde{q}_{i}$) of the
N-soliton solution of the $(n+1)$ th equation from the hierarchy (2) are

$$
\begin{align*}
& \tilde{p}_{i}=\left\{\tilde{p}_{i}, I^{(n+1)}\right\}_{\bar{\theta}}=-\partial I^{(n+1)} / \partial \tilde{q}_{i}=b \tilde{p}_{i} \tag{4}\\
& \hat{q}_{i}=\left\{\tilde{q}_{i}, I^{(n+1)}\right\}_{\tilde{\theta}}=\partial I^{(n+1)} / \partial \tilde{p}_{i}=\tilde{p}_{i}^{2 n}-b \tilde{q}_{i}
\end{align*}
$$

where $\bar{\theta}$ is the standard implectic operator from classical mechanics. The appropriate equations in the space of functionals are

$$
\begin{equation*}
\dot{P}=\left\{P, I^{(n+1)}\right\}_{\theta}=b P \quad \dot{\delta}_{1}=\left\{\delta_{1}, I^{(n+1)}\right\}_{\theta}=(2 n+1) H^{(n)} \tag{5}
\end{equation*}
$$

and are connected with (4) through the map $\delta: F \rightarrow \tilde{F}$ of functionals into their values.
Applying the results of [1] we have obtained the following point-particle Hamiltonians of the N-soliton solution of various extended hierarchies (1) of evolution equations.
(i) Two hierarchies of the extended sKcDG equation in the frame of the first Hamiltonian structure and $a^{2}=12$:

$$
\begin{align*}
& I^{(n, 1)}=\sum_{i}\left(\frac{1}{6 n+1} p_{i}^{6 n+1}-b p_{i} q_{i}\right) \tag{6}\\
& I^{(n, 2)}=\sum_{i}\left(\frac{1}{6 n+5} p_{i}^{6 n+5}-b p_{i} q_{i}\right) .
\end{align*}
$$

(ii) Two hierarchies of the extended Boussinesq equation in the frame of the second Hamiltonian structure and $a^{2}=72$:

$$
\begin{align*}
& I^{(n+1,1)}=\sum_{i}\left(\left(\frac{4}{3}\right)^{n}\left(\operatorname{sgn} \theta_{i}\right)^{n} \frac{1}{3 n+1} p_{i}^{3 n+1}+\left(\operatorname{sgn} \mu_{i}\right) b p_{i} q_{i}\right) \tag{7a}\\
& I^{(n+1,2)}=\sum_{i}\left(\left(\frac{4}{3}\right)^{n}\left(\operatorname{sgn} \mu_{i}\right)^{n+1} \frac{1}{3 n+2} p_{i}^{3 n+2}+\left(\operatorname{sgn} \mu_{i}\right) b p_{i} q_{i}\right) \tag{7b}
\end{align*}
$$

where $\operatorname{sgn} \mu_{i}$ fixes the direction of soliton motion.
(iii) The hierarchy of the extended mKdv equation in the frame of the first Hamiltonian structure and $a=6$:

$$
\begin{equation*}
I^{(n)}=\sum_{i}\left(\frac{1}{2 n+1} p_{i}^{2 n+1}-b p_{i} q_{i}\right) \quad n=\ldots-1,0,1, \ldots \tag{8}
\end{equation*}
$$

In all above examples $p_{i}=2 \kappa_{i}$ and to simplify the notation we have dropped the tilde.
Equations of motion for i th soliton particle, according to (4), take the form

$$
\begin{equation*}
\dot{p}_{i}=\alpha p_{i} \quad \dot{q}_{i}=\beta p_{i}^{k}-\alpha q_{i} \tag{9}
\end{equation*}
$$

with various values of α, β and k. For example, the EmKdv hierarchy has $\alpha=b, \beta=1$, $k=2 n$ and the first EB hierarchy has $\alpha=-\left(\operatorname{sgn} \mu_{i}\right) b, \beta=\left(\frac{4}{3}\right)^{n}\left(\operatorname{sgn} \mu_{i}\right)^{n}, k=3 n$. The solutions of (9) are
$p_{i}(t)=p_{i}(0) \exp (\alpha, t) \quad q_{i}(t)=\frac{\beta p_{i}^{k}(0)}{\alpha(k+1)} \exp (-\alpha t)\{\exp [\alpha(k+1) t]-1\}$.
The one-soliton solution for EKdv, ESKCDG and Eb hierarchies has the form

$$
\begin{equation*}
u_{s}=(3 / a) p^{2}(t) \operatorname{sech}^{2}\left[\frac{1}{2} p(t)(x+q(t))\right] \tag{11}
\end{equation*}
$$

with the appropriate value of the coefficient a. The form of the solution (11) may be verified by inspection. The velocity of this soliton is

$$
\begin{equation*}
v(t)=\dot{q}(t)=\frac{\beta p^{k}(0)}{k+1} \exp (-\alpha t)\{1+k \exp [\alpha(k+1) t]\} \tag{12}
\end{equation*}
$$

hence, for $t \rightarrow \pm \infty v(t) \rightarrow \infty$ and for $t=0 v(t)$ reaches the value characteristic for a common soliton. Moreover, for $\alpha<0$ and $t \rightarrow-\infty$ the amplitude of the soliton diverges and its width vanishes, and for $t \rightarrow+\infty$ the amplitude of the soliton vanishes and the width diverges. For $\alpha>0$ the situation is reversed. The area of the soliton evolves in time proportionally to $p(t): \int_{-\infty}^{\infty} u_{s} \mathrm{~d} x \sim p(t)$.

The one-soliton solution for the Emkdv hierarchy has the form

$$
\begin{equation*}
u_{s}=p(t) \operatorname{sech}\{p(t)[x+q(t)]\} \tag{13}
\end{equation*}
$$

with time evolution similar to the evolution of (11), but now the area of (13) is preserved in time.

EKdV and EMKdV hierarchies are considered by Calogero and Degasperies [3, 4] on the basis of the inverse scattering method, but the other results, as well as the Hamiltonian formulation of soliton-particle dynamics, are new.

References

[1] Blaszak M 1987 J. Phys. A: Math. Gen. 203619
[2] Fuchssteiner B 1983 Prog. Theor. Phys. 701508
[3] Calogero F and Degasperis A 1978 Lett. Nuovo Cimento 22 131, 138
[4] Calogero F and Degasperis A 1978 Lett. Nuovo Cimento 22 263, 270

